Superpixels serve as a powerful preprocessing tool in many computer vision tasks. By using superpixel representation, the number of image primitives can be largely reduced by orders of magnitudes. The majority of superpixel methods use handcrafted features, which usually do not translate well into strong adherence to object boundaries. A few recent superpixel methods have introduced deep learning into the superpixel segmentation process. However, none of these methods is able to produce superpixels in near real-time, which is crucial to the applicability of a superpixel method in practice. In this work, we propose a two-stage graph-based framework for superpixel segmentation. In the first stage, we introduce an efficient Deep Affinity Learning (DAL) network that learns pairwise pixel affinities by aggregating multi-scale information. In the second stage, we propose a highly efficient superpixel method called Hierarchical Entropy Rate Segmentation (HERS). Using the learned affinities from the first stage, HERS builds a hierarchical tree structure that can produce any number of highly adaptive superpixels instantaneously. We demonstrate, through visual and numerical experiments, the effectiveness and efficiency of our method compared to various state-of-the-art superpixel methods.
翻译:超级像素在许多计算机视觉任务中可以作为一种强大的预处理工具。 通过使用超级像素代表, 图像原始数的数量可以因数量级而大为减少。 多数超级像素方法使用手工制作的特性, 通常不会转化为对对象边界的强烈遵守。 几个最近的超级像素方法将深入的学习引入了超级像素分割过程。 但是, 这些方法中没有一个能够在近实时产生超级像素, 这对超级像素方法的实际应用至关重要。 在这项工作中, 我们提出一个基于两个阶段的图像原始数框架, 用于超像素分割。 在第一阶段, 我们引入一个高效的深亲近学习( DAL) 网络, 通过集成多尺度信息来学习双向像素的相似性。 在第二阶段, 我们提出一个高效的超级像素方法, 叫做“ 高度科学的百分率分率分率分率分解( HERS) 。 使用从第一阶段学到的近似近似方法, 赫勒斯( HERS) 建立一个基于两阶段的图形结构结构, 能够产生各种高度适应性超像数的超像值的超像数的实验。