This paper is part of an ongoing endeavor to bring the theory of fair division closer to practice by handling requirements from real-life applications. We focus on two requirements originating from the division of land estates: (1) each agent should receive a plot of a usable geometric shape, and (2) plots of different agents must be physically separated. With these requirements, the classic fairness notion of proportionality is impractical, since it may be impossible to attain any multiplicative approximation of it. In contrast, the ordinal maximin share approximation, introduced by Budish in 2011, provides meaningful fairness guarantees. We prove upper and lower bounds on achievable maximin share guarantees when the usable shapes are squares, fat rectangles, or arbitrary axes-aligned rectangles, and explore the algorithmic and query complexity of finding fair partitions in this setting.


翻译:本文是不断努力通过处理实际应用中的要求,使公平分割理论更接近实践的一部分。我们侧重于源于土地财产分割的两个要求:(1)每个代理人应当获得一个可用的几何形状的图案,(2)不同代理人的地块必须实际分离。有了这些要求,传统的公平性概念是不切实际的,因为可能不可能取得任何多倍近似。相反,布迪什2011年推出的极低比例近似提供了有意义的公平保障。当可用形状是方形、脂肪矩形或任意轴对齐矩形时,我们证明在可实现的最大份额保障上下限,并探索在这一环境中找到公平分割的算法和查询的复杂性。

0
下载
关闭预览

相关内容

专知会员服务
13+阅读 · 2021年3月13日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
279+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Soft-NMS – Improving Object Detection With One Line of Code
统计学习与视觉计算组
6+阅读 · 2018年3月30日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年7月6日
Arxiv
0+阅读 · 2021年7月5日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Soft-NMS – Improving Object Detection With One Line of Code
统计学习与视觉计算组
6+阅读 · 2018年3月30日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员