This paper is part of an ongoing endeavor to bring the theory of fair division closer to practice by handling requirements from real-life applications. We focus on two requirements originating from the division of land estates: (1) each agent should receive a plot of a usable geometric shape, and (2) plots of different agents must be physically separated. With these requirements, the classic fairness notion of proportionality is impractical, since it may be impossible to attain any multiplicative approximation of it. In contrast, the ordinal maximin share approximation, introduced by Budish in 2011, provides meaningful fairness guarantees. We prove upper and lower bounds on achievable maximin share guarantees when the usable shapes are squares, fat rectangles, or arbitrary axes-aligned rectangles, and explore the algorithmic and query complexity of finding fair partitions in this setting.
翻译:本文是不断努力通过处理实际应用中的要求,使公平分割理论更接近实践的一部分。我们侧重于源于土地财产分割的两个要求:(1)每个代理人应当获得一个可用的几何形状的图案,(2)不同代理人的地块必须实际分离。有了这些要求,传统的公平性概念是不切实际的,因为可能不可能取得任何多倍近似。相反,布迪什2011年推出的极低比例近似提供了有意义的公平保障。当可用形状是方形、脂肪矩形或任意轴对齐矩形时,我们证明在可实现的最大份额保障上下限,并探索在这一环境中找到公平分割的算法和查询的复杂性。