We study the Maximum Independent Set of Rectangles (MISR) problem, where we are given a set of axis-parallel rectangles in the plane and the goal is to select a subset of non-overlapping rectangles of maximum cardinality. In a recent breakthrough, Mitchell [2021] obtained the first constant-factor approximation algorithm for MISR. His algorithm achieves an approximation ratio of 10 and it is based on a dynamic program that intuitively recursively partitions the input plane into special polygons called corner-clipped rectangles, without intersecting certain special horizontal line segments called fences. In this paper, we present a 3-approximation algorithm for MISR which is based on a similar recursive partitioning scheme. First, we use a partition into a more general class of axis-parallel polygons with constant complexity each, which allows us to provide an arguably simpler analysis and at the same time already improves the approximation ratio to 6. Then, using a more elaborate charging scheme and a recursive partitioning into general axis-parallel polygons with constant complexity, we improve our approximation ratio to 3. In particular, our partitioning uses more general fences that can be sequences of up to O(1) line segments each. This and our other new ideas may be useful for future work towards a PTAS for MISR.
翻译:我们研究的是最大独立矩形( MISR) 问题, 我们得到的是一组在平面上的轴- 平行矩形, 目标是选择一组非重叠的顶部矩形。 在最近的一次突破中, Mitchell [ 2021] 获得了第一个常态- 因素近似算法 。 他的算法实现了10 的近似比率, 并且基于一个动态程序, 将输入平面直线分割成称为角- 环形矩形的特殊多边形, 而不将某些特殊水平线段( 栅栏) 交叉开来。 在本文件中, 我们为 MISR 绘制了一个基于类似循环分割方案的非重叠矩形矩形矩形。 首先, 我们用一个偏差转换成一个更普通的轴- 方圆形多边形 。 它使我们能够提供比较简单的分析, 同时, 也已经将输入的近似于6 。 使用更精密的收费计划, 和连接到一般轴- 轴- 多边形部分 。 使用我们每个常规- P- 等距 的常规- 等距, 我们可以用一个常规- 直线 。