We depart from our approximation of 2000 of all root radii of a polynomial, which has readily extended Sch{\"o}nhage's efficient algorithm of 1982 for a single root radius. We revisit this extension, advance it, based on our simple but novel idea, and yield significant practical acceleration of the known near optimal subdivision algorithms for complex and real root-finding of user's choice. We achieve this by means of significant saving of exclusion tests and Taylor's shifts, which are the bottleneck of subdivision root-finders. This saving relies on our novel recipes for the initialization of root-finding iterations of independent interest. We demonstrate our practical progress with numerical tests, provide extensive analysis of the resulting algorithms, and show that, like the preceding subdivision root-finders, they support near optimal Boolean complexity bounds.
翻译:我们偏离了2000年的近似值, 即一个多核体的所有根半径, 它迅速扩展了 Sch 的1982 年有效算法, 用于一个单一根半径。 我们根据我们简单但新颖的想法, 重新审视这一扩展, 推进它, 并产生已知的近乎最佳的分类算法的显著实际加速, 用于复杂和真实的用户选择的根调查。 我们通过大量节省排斥测试和泰勒的转移来实现这一目标, 后者是亚vision 根指针的瓶颈。 这一保存依赖于我们启动独立兴趣的根代的新型配方。 我们用数字测试来展示我们的实际进展, 提供对由此产生的算法的广泛分析, 并显示它们和前面的亚视根指一样, 支持接近最佳的布林复杂界限 。