We present a numerical method to model dynamical systems from data. We use the recently introduced method Scalable Probabilistic Approximation (SPA) to project points from a Euclidean space to convex polytopes and represent these projected states of a system in new, lower-dimensional coordinates denoting their position in the polytope. We then introduce a specific nonlinear transformation to construct a model of the dynamics in the polytope and to transform back into the original state space. To overcome the potential loss of information from the projection to a lower-dimensional polytope, we use memory in the sense of the delay-embedding theorem of Takens. By construction, our method produces stable models. We illustrate the capacity of the method to reproduce even chaotic dynamics and attractors with multiple connected components on various examples.
翻译:我们用一种数字方法从数据中建模动态系统。 我们使用最近采用的方法“可缩放概率相近性”来从Euclidean空间投射点到Convex多面形,并在新的、低维坐标中代表系统预测状态,标明其在多面图的方位。 然后我们引入一种特定的非线性变换,以构建多面图中的动态模型,并返回到原来的状态空间。为了克服从投影到低维多维图之间信息的潜在损失,我们用记忆来表示延迟叠装图案的理论。通过构建,我们的方法产生稳定模型。我们用各种例子来说明甚至复制混乱动态和吸引器的能力。