The internet of things devices suffer of low memory while good accuracy is needed. Designing suitable algorithms is vital in this subject. This paper proposes a feed forward LogNNet neural network which uses a semi-linear Henon type discrete chaotic map to classify MNIST-10 dataset. The model is composed of reservoir part and trainable classifier. The aim of reservoir part is transforming the inputs to maximize the classification accuracy using a special matrix filing method and a time series generated by the chaotic map. The parameters of the chaotic map are optimized using particle swarm optimization with random immigrants. The results show that the proposed LogNNet/Henon classifier has higher accuracy and same RAM saving comparable to the original version of LogNNet and has broad prospects for implementation in IoT devices. In addition, the relation between the entropy and accuracy of the classification is investigated. It is shown that there exists a direct relation between the value of entropy and accuracy of the classification.
翻译:事物装置的互联网存在低内存, 同时需要准确性。 在此主题中, 设计适当的算法至关重要 。 本文建议提供一个前向LogNNet神经网络, 使用半线性Hennon型离散混乱地图对 MNIST- 10 数据集进行分类。 模型由储油层部分和可训练的分类器组成。 储油层部分的目的是使用特殊的矩阵归档方法和混乱地图产生的时间序列来改变输入, 使分类准确性最大化。 使用随机移民的粒子群温优化来优化混乱地图的参数。 结果表明, 拟议的LogNNet/ Henon分类器的精度更高, 与LogNNet的原始版本具有相同的内存值, 并且具有在 IoT 设备中执行的广阔前景。 此外, 还要调查分类的英特质与精度之间的关系。 已经显示, 信箱值与分类的精度之间存在直接关系 。