We present SkelNetOn 2019 Challenge and Deep Learning for Geometric Shape Understanding workshop to utilize existing and develop novel deep learning architectures for shape understanding. We observed that unlike traditional segmentation and detection tasks, geometry understanding is still a new area for investigation using deep learning techniques. SkelNetOn aims to bring together researchers from different domains to foster learning methods on global shape understanding tasks. We aim to improve and evaluate the state-of-the-art shape understanding approaches, and to serve as reference benchmarks for future research. Similar to other challenges in computer vision domain, SkelNetOn tracks propose three datasets and corresponding evaluation methodologies; all coherently bundled in three competitions with a dedicated workshop co-located with CVPR 2019 conference. In this paper, we describe and analyze characteristics of each dataset, define the evaluation criteria of the public competitions, and provide baselines for each task.
翻译:我们介绍了SkelNetOn 2019年关于对几何形状理解的挑战和深层学习讲习班,以利用现有和开发新的深层学习结构,进行形状理解;我们注意到,与传统的分化和探测任务不同,几何理解仍然是利用深层学习技术进行调查的新领域;SkelNetOn 旨在汇集不同领域的研究人员,以促进关于全球形状理解任务的学习方法;我们旨在改进和评价最先进的形状理解方法,并作为今后研究的参考基准;与计算机视野领域的其他挑战一样,SkelNetOn轨道提出了三个数据集和相应的评价方法;所有都一致地将三个竞赛与一个专门的讲习班捆绑在一起,该讲习班与CVPR 2019会议合用同一地点;在本文件中,我们描述和分析每个数据集的特点,确定公共竞争的评价标准,并为每项任务提供基线。