We present a method to estimate two-dimensional, time-invariant oceanic flow fields based on data from both ensemble forecasts and online measurements. Our method produces a spatially coherent estimate in a computationally efficient manner suitable for use in marine robotics for path planning and related applications. We use kernel methods and singular value decomposition to find a compact model of the ensemble data that is represented as a linear combination of basis flow fields and that preserves the spatial correlations present in the data. Online measurements of ocean current, taken for example by marine robots, can then be incorporated using recursive Bayesian estimation. We provide computational analysis, performance comparisons with related methods, and demonstration with real-world ensemble data to show the computational efficiency and validity of our method. Possible applications in addition to path planning include active perception methods for model improvement through intentional choice of measurement locations.
翻译:我们根据共同预测和在线测量数据提出一种估算二维、时间变化的海洋流流场的方法。我们的方法以适合海洋机器人用于路径规划和相关应用的计算有效方式得出空间上一致的估计。我们使用内核方法和单值分解方法来寻找集合数据的紧凑模型,该模型代表基础流流场的线性组合,并保存数据中存在的空间相关性。然后,可以使用可循环的贝耶西亚估计法对洋流进行在线测量。我们提供计算分析,对相关方法进行性能比较,并以真实世界的共性数据进行演示,以显示我们方法的计算效率和有效性。除了路径规划外,可能的应用还包括通过有意选择测量地点来改进模型的积极认知方法。