The Cahn--Hilliard equation is one of the most common models to describe phase separation processes of a mixture of two materials. For a better description of short-range interactions between the material and the boundary, various dynamic boundary conditions for the Cahn--Hilliard equation have been proposed and investigated in recent times. Of particular interests are the model by Goldstein, Miranville and Schimperna (Physica D, 2011) and the model by Liu and Wu (Arch.~Ration.~Mech.~Anal., 2019). Both of these models satisfy similar physical properties but differ greatly in their mass conservation behaviour. In this paper we introduce a new model which interpolates between these previous models, and investigate analytical properties such as the existence of unique solutions and convergence to the previous models mentioned above in both the weak and the strong sense. For the strong convergences we also establish rates in terms of the interpolation parameter, which are supported by numerical simulations obtained from a fully discrete, unconditionally stable and convergent finite element scheme for the new interpolation model.


翻译:Cahn-Hilliard 等式是描述两种材料相混合的相分离过程的最常见模型之一。为了更好地描述材料与边界之间的短距离相互作用,最近提出并调查了Cahn-Hilliard 等式的各种动态边界条件。Goldstein、Miranville和Schimperna的模型(Physica D,2011年)和Liu和Wu的模型(Arch.~Ration.~Mech.~Anal.,2019年)。这两种模型都具有相似的物理特性,但在质量保护行为上差异很大。在本文件中,我们引入了一种新的模型,在这些先前的模型之间进行内插,并调查分析性质,例如存在独特的解决方案,在弱和强烈的意义上,与上面提到的前一个模型的趋同。关于内插参数的强烈趋同率,我们还建立了从新的内插模型的完全离的、无条件稳定和一致的参数中得到支持的数值模拟。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
30+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
5+阅读 · 2019年4月15日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年6月14日
Arxiv
0+阅读 · 2021年6月10日
VIP会员
相关VIP内容
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
30+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
5+阅读 · 2019年4月15日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员