Channel pruning is a popular technique for compressing convolutional neural networks (CNNs), where various pruning criteria have been proposed to remove the redundant filters. From our comprehensive experiments, we found two blind spots in the study of pruning criteria: (1) Similarity: There are some strong similarities among several primary pruning criteria that are widely cited and compared. According to these criteria, the ranks of filters'Importance Score are almost identical, resulting in similar pruned structures. (2) Applicability: The filters'Importance Score measured by some pruning criteria are too close to distinguish the network redundancy well. In this paper, we analyze these two blind spots on different types of pruning criteria with layer-wise pruning or global pruning. The analyses are based on the empirical experiments and our assumption (Convolutional Weight Distribution Assumption) that the well-trained convolutional filters each layer approximately follow a Gaussian-alike distribution. This assumption has been verified through systematic and extensive statistical tests.


翻译:频道运行是一种压缩卷发神经网络(CNNs)的流行技术,建议采用各种调整标准来清除多余的过滤器。我们从全面实验中发现,在对裁剪标准的研究中发现两个盲点:(1) 相似性:在几个主要裁剪标准之间有一些强烈的相似性,它们被广泛引用和比较。根据这些标准,过滤器的微量分的等级几乎相同,导致相似的修剪结构。(2) 适用性:用某些裁剪标准测量的过滤器的弥散分太近,无法区分网络冗余。在本文中,我们分析了这两种盲点,这些盲点是不同类型的剪裁标准,有按层划线或全球划线。这些分析是基于实验实验实验和我们的假设(ConvolucalWight分布),即经过良好训练的卷发过滤器的每个层大致遵循高斯-类似分布法。这一假设通过系统和广泛的统计测试得到验证。

0
下载
关闭预览

相关内容

Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
108+阅读 · 2020年5月3日
【SIGIR2020】学习词项区分性,Learning Term Discrimination
专知会员服务
16+阅读 · 2020年4月28日
人工智能 | CCF推荐期刊专刊约稿信息6条
Call4Papers
5+阅读 · 2019年2月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年4月5日
Arxiv
0+阅读 · 2021年4月3日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关VIP内容
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
108+阅读 · 2020年5月3日
【SIGIR2020】学习词项区分性,Learning Term Discrimination
专知会员服务
16+阅读 · 2020年4月28日
相关资讯
人工智能 | CCF推荐期刊专刊约稿信息6条
Call4Papers
5+阅读 · 2019年2月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员