Due to the development of graph neural network models, like graph convolutional network (GCN), graph-based representation learning methods have made great progress in recommender systems. However, the data sparsity is still a challenging problem that graph-based methods are confronted with. Recent works try to solve this problem by utilizing the side information. In this paper, we introduce easily accessible textual information to alleviate the negative effects of data sparsity. Specifically, to incorporate with rich textual knowledge, we utilize a pre-trained context-awareness natural language processing model to initialize the embeddings of text nodes. By a GCN-based node information propagation on the constructed heterogeneous graph, the embeddings of users and items can finally be enriched by the textual knowledge. The matching function used by most graph-based representation learning methods is the inner product, this linear operation can not fit complex semantics well. We design a predictive network, which can combine the graph-based representation learning with the matching function learning, and demonstrate that this predictive architecture can gain significant improvements. Extensive experiments are conducted on three public datasets and the results verify the superior performance of our method over several baselines.


翻译:由于开发了图形神经网络模型,如图形革命网络(GCN),基于图形的表达式学习方法在推荐者系统中取得了巨大进展。然而,数据宽度仍然是基于图形的方法所面临的一个具有挑战性的问题。最近的工作试图通过利用侧面信息解决这个问题。在本文中,我们引入了易于获取的文字信息以减轻数据宽广的负面影响。具体地说,为了吸收丰富的文字知识,我们使用预先培训的背景意识自然语言处理模型来启动文本节点的嵌入。通过基于GCN的节点信息传播,用户和项目的嵌入最终可以通过文本知识加以丰富。大多数基于图形的表达式学习方法所使用的匹配功能是内部产品,这种线性操作无法适应复杂的语义学。我们设计了一个预测网络,可以将基于图形的表达学习与匹配功能学习结合起来,并表明这一预测性结构可以取得显著改进。在三个公共数据集上进行了广泛的实验,结果可以验证我们方法在几个基线上的优劣性。

1
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
专知会员服务
37+阅读 · 2020年10月15日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Heterogeneous Deep Graph Infomax
Arxiv
12+阅读 · 2019年11月19日
Arxiv
8+阅读 · 2019年5月20日
CoCoNet: A Collaborative Convolutional Network
Arxiv
6+阅读 · 2019年1月28日
VIP会员
相关VIP内容
专知会员服务
37+阅读 · 2020年10月15日
Top
微信扫码咨询专知VIP会员