It is a known problem that deep-learning-based end-to-end (E2E) channel coding systems depend on a known and differentiable channel model, due to the learning process and based on the gradient-descent optimization methods. This places the challenge to approximate or generate the channel or its derivative from samples generated by pilot signaling in real-world scenarios. Currently, there are two prevalent methods to solve this problem. One is to generate the channel via a generative adversarial network (GAN), and the other is to, in essence, approximate the gradient via reinforcement learning methods. Other methods include using score-based methods, variational autoencoders, or mutual-information-based methods. In this paper, we focus on generative models and, in particular, on a new promising method called diffusion models, which have shown a higher quality of generation in image-based tasks. We will show that diffusion models can be used in wireless E2E scenarios and that they work as good as Wasserstein GANs while having a more stable training procedure and a better generalization ability in testing.


翻译:众所周知的问题是,由于学习过程和基于梯度-荧光优化方法,深学习的终端到终端(E2E)通道编码系统取决于已知和不同的频道模式,这给在现实情景中通过实验信号生成的样本来接近或生成频道或其衍生物带来了挑战。目前,有两种普遍的方法可以解决这个问题。一种是通过基因对抗性对立网络(GAN)生成频道,另一种是基本上通过强化学习方法来接近梯度。其他方法包括基于分数的方法、变式自动编码器或基于相互信息的方法。在本文中,我们侧重于基因化模型,特别是称为推广模型的有希望的新方法,这种方法在基于图像的任务中显示了更高质量的生成。我们将表明,扩散模型可以用于无线E2E情景中,并且可以像Wasserstein GANs那样良好,同时具有更稳定的培训程序和测试的更普及能力。

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
175+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年3月27日
Arxiv
0+阅读 · 2023年3月25日
Arxiv
0+阅读 · 2023年3月23日
Arxiv
29+阅读 · 2022年9月10日
Arxiv
44+阅读 · 2022年9月6日
VIP会员
相关VIP内容
专知会员服务
25+阅读 · 2021年4月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
175+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员