项目名称: g-C3N4/Au-SnO2纳米簇复合材料的构建及可见光下光电协同催化还原CO2性能研究
项目编号: No.51502088
项目类型: 青年科学基金项目
立项/批准年度: 2016
项目学科: 无机非金属材料学科
项目作者: 陈述
作者单位: 湖南科技大学
项目金额: 21万元
中文摘要: 光催化还原CO2能直接利用太阳光但光生载流子分离效率较低,电催化还原可控性好但能耗较高,光电协同催化一方面借助光催化活性降低能耗,另一方面利用电催化作用提高反应可控性,能充分发挥二者的优势,但目前可见光下高效还原CO2的光电协同催化材料十分缺乏。本项目拟以石墨相氮化碳(g-C3N4)为基质,采用光诱导还原法负载小尺寸Au-SnO2纳米簇,构建新型光电协同催化还原CO2复合材料。该复合材料中g-C3N4可作为可见光捕获基质和纳米簇的稳定骨架,负载的纳米簇中Au能促进光生载流子的定向迁移并提供高活性催化位点,SnO2可调节电催化活性并保持纳米簇的分散稳定性,从而大幅度提高其光电协同催化效率。进一步探讨g-C3N4类型、纳米簇组成和结构对复合材料的吸附能力和光电催化活性等性能的影响,揭示此类复合材料的光电协同催化作用机制,为高效光电催化材料的设计和CO2的资源化利用提供新的策略和科学依据。
中文关键词: 石墨相氮化碳;纳米簇;光电协同催化;可见光;CO2还原
英文摘要: Photocatalytic reduction of CO2 can utilize sunlight directly but enduring with low efficiency for the separation of photo-induced carriers. Electrocatalytic reduction can be properly controlled but with high energy consumption. Synergistic photoelectrocatalysis can give full play to the advantages of both, on the one hand drawing support from the photocatalytic activity to reduce energy consumption, on the other hand taking advantage of electrocatalytic effect to improve the reaction controllability. However, efficient and stable composites for synergistic photoelectrocatalytic reduction of CO2 under visible light are so scarce. This project intends to adopt graphitic carbon nitride (g-C3N4) as matrix to load ultrafine Au-SnO2 nanoclusters by light-induced reduction, and construct a novel composite material for synergistic photoelectrocatalytic reduction of CO2. In this composite material, g-C3N4 component performs as a visible light harvester and a skeleton to stabilize nanoclusters. The Au component in nanoclusters can promote the directional migration and separation of photo-induced carriers and provide the highly active catalytic sites. The SnO2 component can regulate the electrical activity and maintain nanoclusters’ highly dispersion and stability. All the factors above will greatly increase the efficiency of synergistic photoelectrocatalysis. Furthermore, we will investigate how the type of g-C3N4, the composition and structure of Au-SnO2 nanocluster influence the adsorption capacity and photoelectrocatalytic activity. A thorough understanding of the mechanisms of synergistic photoelectrocatalysis in the composite catalyst will provide new strategies and scientific basis for the design of multifunctional photoelectrcatalyst and the utilization of CO2 as a resource.
英文关键词: Graphitic Carbon nitride (g-C3N4);Nanocluster;Synergistic photoelectrocatalysis;Visible light;CO2 reduction