Recently, graph neural networks (GNNs) have become an important and active research direction in deep learning. It is worth noting that most of the existing GNN-based methods learn graph representations within the Euclidean vector space. Beyond the Euclidean space, learning representation and embeddings in hyper-complex space have also shown to be a promising and effective approach. To this end, we propose Quaternion Graph Neural Networks (QGNN) and Gated Quaternion Graph Neural Networks (GQGNN) to learn graph representations within the Quaternion space. As demonstrated, the Quaternion space, a hyper-complex vector space, provides highly meaningful computations and analogical calculus through Hamilton product compared to the Euclidean and complex vector spaces. Our QGNN obtains state-of-the-art results on a range of benchmark datasets for graph classification and node classification. Besides, regarding knowledge graphs, our QGNN-based knowledge graph embedding method gets state-of-the-art results on three new and challenging benchmark datasets for knowledge graph completion. Furthermore, regarding text graphs, our GQGNN-based text classification method works better than state-of-the-art methods on benchmark datasets for inductive text classification. Our code is available at: \url{https://github.com/daiquocnguyen/QGNN}.
翻译:最近,平面神经网络(GNNs)已成为深层学习的一个重要和积极的研究方向,值得指出的是,现有大多数基于GNN的GNN方法在Euclidean矢量空间内学习图示。除了Euclidean空间外,学习代表性和嵌入超复杂矢量空间也证明是一种有希望和有效的方法。为此,我们提议Quarterion图神经网络(QGNN)和Gated Quaternion图形神经网络(GQGNNN)在Quaterion空间内学习图形显示。正如所显示的那样,Quaterrion空间,一个超兼容性矢量空间,通过汉密尔顿产品提供非常有意义的计算和模拟计算。我们的QGNNNNN网在一系列用于图表分类和结点分类的基准数据集中,基于我们基于QNNNN的知识嵌入图的方法在三种新的GG图表文本和具有挑战性的数据完成方法方面,在三个新的GNG图表中,在新的G标准文本上获得更具有挑战性的数据完成方法。