Node embedding is a central topic in graph representation learning. Computational efficiency and scalability can be challenging to any method that requires full-graph operations. We propose sampling approaches to node embedding, with or without explicit modelling of the feature vector, which aim to extract useful information from both the eigenvectors related to the graph Laplacien and the given values associated with the graph.
翻译:节点嵌入是图表代表性学习的一个中心主题。 计算效率和可缩放性对任何需要全图操作的方法都可能具有挑战性。 我们建议对节点嵌入采样方法,无论是否对特性矢量进行明确的建模,目的是从与Laplacecien图以及与该图相关的给定值有关的源源源中提取有用的信息。