We study the relationship between the underlying structure of posets and the spectral and combinatorial properties of their higher-order random walks. While fast mixing of random walks on hypergraphs has led to myriad breakthroughs throughout theoretical computer science in the last five years, many other important applications (e.g. locally testable codes, 2-2 games) rely on the more general non-simplicial structures. These works make it clear that the global expansion properties of posets depend strongly on their underlying architecture (e.g. simplicial, cubical, linear algebraic), but the overall phenomenon remains poorly understood. In this work, we quantify the advantage of different architectures, highlighting how structural regularity controls the spectral decay and edge-expansion of corresponding random walks. In particular, we show the spectra of walks on expanding posets (Dikstein, Dinur, Filmus, Harsha RANDOM 2018) concentrate in strips around a small number of approximate eigenvalues controlled by the poset's regularity. This gives a simple condition to identify architectures (e.g. the Grassmann) that exhibit fast (exponential) decay of eigenvalues, versus architectures like hypergraphs with slow (linear) decay -- a crucial distinction in applications to hardness of approximation and agreement testing such as the recent proof of the 2-2 Games Conjecture (Khot, Minzer, Safra FOCS 2018). We show these results lead to a tight variance-based characterization of edge-expansion on eposets generalizing (Bafna, Hopkins, Kaufman, and Lovett (SODA 2022)), and pay special attention to the case of the Grassmann where we show our results are tight for a natural set of sparsifications of the Grassmann graphs. We note for clarity that our results do not recover the characterization used in the proof of the 2-2 Games Conjecture which relies on $\ell_\infty$ rather than $\ell_2$-structure.
翻译:我们研究的是高阶随机行走的表面结构与光谱和组合属性之间的关系。 虽然在高阶随机行走中随机行走的快速混合导致理论计算机科学在过去五年中取得了无数突破, 但许多其他重要应用(例如本地测试代码, 2-2游戏)依赖更普遍的非简易结构。 这些作品清楚地表明, 表面的全球扩张属性在很大程度上取决于其基本结构( 例如: 简化、 立方、 线性代数), 但总体现象仍然不为人所理解。 在这项工作中, 我们量化了不同结构的优势, 凸显了结构规律如何控制相应的随机行走的光谱衰落和边缘扩张。 特别是, 我们展示的是扩大表层结构的光谱( 迪克斯坦、 迪纳尔、 电影、 哈沙· 兰德姆· 2018) 集中在基于少量的内基值的内基值值值, 我们的内基内基内基内基内基内值, 我们的内基内基内基内基内基内基内基内基内, 我们的内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内</s>