We study the relationship between the underlying structure of posets and the spectral and combinatorial properties of their higher-order random walks. While fast mixing of random walks on hypergraphs has led to myriad breakthroughs throughout theoretical computer science in the last five years, many other important applications (e.g. locally testable codes, 2-2 games) rely on the more general non-simplicial structures. These works make it clear that the global expansion properties of posets depend strongly on their underlying architecture (e.g. simplicial, cubical, linear algebraic), but the overall phenomenon remains poorly understood. In this work, we quantify the advantage of different architectures, highlighting how structural regularity controls the spectral decay and edge-expansion of corresponding random walks. In particular, we show the spectra of walks on expanding posets (Dikstein, Dinur, Filmus, Harsha RANDOM 2018) concentrate in strips around a small number of approximate eigenvalues controlled by the poset's regularity. This gives a simple condition to identify architectures (e.g. the Grassmann) that exhibit fast (exponential) decay of eigenvalues, versus architectures like hypergraphs with slow (linear) decay -- a crucial distinction in applications to hardness of approximation and agreement testing such as the recent proof of the 2-2 Games Conjecture (Khot, Minzer, Safra FOCS 2018). We show these results lead to a tight variance-based characterization of edge-expansion on eposets generalizing (Bafna, Hopkins, Kaufman, and Lovett (SODA 2022)), and pay special attention to the case of the Grassmann where we show our results are tight for a natural set of sparsifications of the Grassmann graphs. We note for clarity that our results do not recover the characterization used in the proof of the 2-2 Games Conjecture which relies on $\ell_\infty$ rather than $\ell_2$-structure.


翻译:我们研究的是高阶随机行走的表面结构与光谱和组合属性之间的关系。 虽然在高阶随机行走中随机行走的快速混合导致理论计算机科学在过去五年中取得了无数突破, 但许多其他重要应用(例如本地测试代码, 2-2游戏)依赖更普遍的非简易结构。 这些作品清楚地表明, 表面的全球扩张属性在很大程度上取决于其基本结构( 例如: 简化、 立方、 线性代数), 但总体现象仍然不为人所理解。 在这项工作中, 我们量化了不同结构的优势, 凸显了结构规律如何控制相应的随机行走的光谱衰落和边缘扩张。 特别是, 我们展示的是扩大表层结构的光谱( 迪克斯坦、 迪纳尔、 电影、 哈沙· 兰德姆· 2018) 集中在基于少量的内基值的内基值值值, 我们的内基内基内基内基内基内值, 我们的内基内基内基内基内基内基内基内基内, 我们的内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内基内</s>

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
【2022新书】谱图理论,Spectral Graph Theory,100页pdf
专知会员服务
75+阅读 · 2022年4月15日
【硬核书】矩阵代数基础,248页pdf
专知会员服务
86+阅读 · 2021年12月9日
【硬核书】树与网络上的概率,716页pdf
专知会员服务
74+阅读 · 2021年12月8日
专知会员服务
51+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Principal Neighbourhood Aggregation for Graph Nets
Arxiv
17+阅读 · 2020年6月7日
A Survey on Edge Intelligence
Arxiv
52+阅读 · 2020年3月26日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
【2022新书】谱图理论,Spectral Graph Theory,100页pdf
专知会员服务
75+阅读 · 2022年4月15日
【硬核书】矩阵代数基础,248页pdf
专知会员服务
86+阅读 · 2021年12月9日
【硬核书】树与网络上的概率,716页pdf
专知会员服务
74+阅读 · 2021年12月8日
专知会员服务
51+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员