This paper introduces a simple and tractable sieve estimation of semiparametric conditional factor models with latent factors. We establish large-$N$-asymptotic properties of the estimators and test statistics without requiring large $T$. We also develop a simple bootstrap procedure for conducting inference about the conditional pricing errors as well as the shapes of the factor loading functions. These results enable us to estimate conditional factor structure of a large set of individual assets by utilizing arbitrary nonlinear functions of a number of characteristics without the need to pre-specify the factors, while allowing us to disentangle the characteristics' role in capturing factor betas from alphas (i.e., undiversifiable risk from mispricing). We apply these methods to the cross-section of individual U.S. stock returns and find strong evidence of large nonzero pricing errors that combine to produce arbitrage portfolios with Sharpe ratios above 3.
翻译:本文介绍了对具有潜在因素的半参数有条件要素模型的简单和可移植的筛选估计。我们建立了估计值和测试统计数据的大型-N$-防患性特性,而不需要大笔T美元。我们还开发了一个简单的陷阱程序,用于对有条件定价错误以及要素装载功能的形状进行推断。这些结果使我们能够通过使用一些特性的任意非线性功能来估计大量个体资产的有条件要素结构,而不必预先说明各种因素,同时使我们能够分辨这些特性在从α(即错误定价不可分化的风险)中捕获要素贝贝(即不可分的)方面的作用。我们将这些方法应用于单个美国股票回报的交叉部分,并找到大量非零价格错误的有力证据,这些错误合在一起产生具有3以上Sharpe比率的套利组合。