The study of phase transitions using data-driven approaches is challenging, especially when little prior knowledge of the system is available. Topological data analysis is an emerging framework for characterizing the shape of data and has recently achieved success in detecting structural transitions in material science, such as the glass--liquid transition. However, data obtained from physical states may not have explicit shapes as structural materials. We thus propose a general framework, termed "topological persistence machine," to construct the shape of data from correlations in states, so that we can subsequently decipher phase transitions via qualitative changes in the shape. Our framework enables an effective and unified approach in phase transition analysis. We demonstrate the efficacy of the approach in detecting the Berezinskii--Kosterlitz--Thouless phase transition in the classical XY model and quantum phase transitions in the transverse Ising and Bose--Hubbard models. Interestingly, while these phase transitions have proven to be notoriously difficult to analyze using traditional methods, they can be characterized through our framework without requiring prior knowledge of the phases. Our approach is thus expected to be widely applicable and will provide practical insights for exploring the phases of experimental physical systems.
翻译:利用数据驱动的方法对阶段过渡进行研究是具有挑战性的,特别是当以前对该系统的了解很少时。地形数据分析是确定数据形状的新兴框架,最近成功地探测了物质科学的结构过渡,例如玻璃-液体过渡。然而,从物理状态获得的数据可能没有明显的结构材料形状。因此,我们提议了一个总框架,称为“地形持久性机器”,用国家内部的相互关系来构建数据形状,以便我们能够随后通过质的变化来破解阶段过渡。我们的框架使得在阶段过渡分析中能够采取一种有效和统一的方法。我们在古典XY模型和横跨Is和Bose-Hubbard模型的量级过渡中展示了发现Berezinskii-Kosterlitz-Thoouness阶段过渡方法的功效。有趣的是,虽然这些阶段过渡已证明难以用传统方法分析,但可以不经事先对阶段的了解而通过我们的框架加以定性。因此,我们的方法可望广泛适用,并将为探索物理系统各阶段提供实际的洞察力。