Recent research has successfully demonstrated new types of data poisoning attacks. To address this problem, some researchers have proposed both offline and online data poisoning detection defenses which employ machine learning algorithms to identify such attacks. In this work, we take a different approach to preventing data poisoning attacks which relies on cryptographically-based authentication and provenance to ensure the integrity of the data used to train a machine learning model. The same approach is also used to prevent software poisoning and model poisoning attacks. A software poisoning attack maliciously alters one or more software components used to train a model. Once the model has been trained it can also be protected against model poisoning attacks which seek to alter a model's predictions by modifying its underlying parameters or structure. Finally, an evaluation set or test set can also be protected to provide evidence if they have been modified by a second data poisoning attack. To achieve these goals, we propose VAMP which extends the previously proposed AMP system, that was designed to protect media objects such as images, video files or audio clips, to the machine learning setting. We first provide requirements for authentication and provenance for a secure machine learning system. Next, we demonstrate how VAMP's manifest meets these requirements to protect a machine learning system's datasets, software components, and models.


翻译:最近的研究成功地展示了新型数据中毒袭击。为了解决这一问题,一些研究人员提出了离线和在线数据中毒检测防御,采用机器学习算法来识别此类袭击。在这项工作中,我们采取了不同的方法来防止数据中毒袭击,这依赖于加密的认证和源代码,以确保用于培训机器学习模型的数据的完整性。同样的方法也用于防止软件中毒和模型中毒袭击。软件中毒袭击恶意地改变了用于培训模型的一个或多个软件组件。一旦模型经过培训,它也可以受到保护,防止模型中毒袭击,这种袭击试图通过修改其基本参数或结构来改变模型预测。最后,如果数据中毒袭击对数据集或测试集进行了修改,我们也可以加以保护,以提供证据。为了实现这些目标,我们提议VAMP将先前提议的AMP系统扩展至机器学习环境,目的是保护图像、视频文件或音频剪等媒体对象。我们首先为安全机器学习系统提供认证和证明要求。接下来,我们演示了VAMP机器软件模块如何满足这些软件的模版要求。

0
下载
关闭预览

相关内容

机器学习(Machine Learning)是一个研究计算学习方法的国际论坛。该杂志发表文章,报告广泛的学习方法应用于各种学习问题的实质性结果。该杂志的特色论文描述研究的问题和方法,应用研究和研究方法的问题。有关学习问题或方法的论文通过实证研究、理论分析或与心理现象的比较提供了坚实的支持。应用论文展示了如何应用学习方法来解决重要的应用问题。研究方法论文改进了机器学习的研究方法。所有的论文都以其他研究人员可以验证或复制的方式描述了支持证据。论文还详细说明了学习的组成部分,并讨论了关于知识表示和性能任务的假设。 官网地址:http://dblp.uni-trier.de/db/journals/ml/
专知会员服务
33+阅读 · 2020年12月28日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
Federated Learning: 架构
AINLP
4+阅读 · 2020年9月20日
ICLR2019 图上的对抗攻击
图与推荐
17+阅读 · 2020年3月15日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Arxiv
14+阅读 · 2020年10月26日
Deflecting Adversarial Attacks
Arxiv
8+阅读 · 2020年2月18日
VIP会员
相关资讯
Federated Learning: 架构
AINLP
4+阅读 · 2020年9月20日
ICLR2019 图上的对抗攻击
图与推荐
17+阅读 · 2020年3月15日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Top
微信扫码咨询专知VIP会员