Numerous studies have examined the associations between long-term exposure to fine particulate matter (PM2.5) and adverse health outcomes. Recently, many of these studies have begun to employ high-resolution predicted PM2.5 concentrations, which are subject to measurement error. Previous approaches for exposure measurement error correction have either been applied in non-causal settings or have only considered a categorical exposure. Moreover, most procedures have failed to account for uncertainty induced by error correction when fitting an exposure-response function (ERF). To remedy these deficiencies, we develop a multiple imputation framework that combines regression calibration and Bayesian techniques to estimate a causal ERF. We demonstrate how the output of the measurement error correction steps can be seamlessly integrated into a Bayesian additive regression trees (BART) estimator of the causal ERF. We also demonstrate how locally-weighted smoothing of the posterior samples from BART can be used to create a better fitting ERF. Our proposed approach also properly propagates the exposure measurement error uncertainty to yield accurate standard error estimates. We assess the robustness of our proposed approach in an extensive simulation study. We then apply our methodology to estimate the effects of PM2.5 on all-cause mortality among Medicare enrollees in the New England from 2000-2012.


翻译:最近,许多这类研究已开始采用高分辨率预测PM2.5浓度的预测PM2.5浓度,这可能会发生测量错误。以往的暴露测量误差校正方法要么在非因果环境中应用过,要么只考虑绝对暴露。此外,大多数程序在适应暴露反应功能时没有考虑到错误校正引起的不确定性。为了纠正这些缺陷,我们开发了一个多种估算框架,将回归校准和巴耶斯技术结合起来,以估计因果的ERF。我们展示了测量误差步骤的输出如何被无缝地纳入一个贝叶西亚累加回归树(BART)中。我们还演示了如何利用当地加权的BART的海表样品的光滑度来创造更合适的ERF。我们提出的方法还恰当地宣传了暴露误差的误差不确定性,以得出准确的标准误差估计。我们在一项广泛的模拟研究中评估了拟议方法的稳健性。然后我们运用了我们的方法来估计2000年英国将MDFS的死亡率升至2000年。

0
下载
关闭预览

相关内容

专知会员服务
26+阅读 · 2021年7月11日
机器学习入门的经验与建议
专知会员服务
91+阅读 · 2019年10月10日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
已删除
将门创投
7+阅读 · 2018年11月5日
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年11月21日
Arxiv
30+阅读 · 2021年7月7日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
6+阅读 · 2018年3月28日
VIP会员
相关VIP内容
专知会员服务
26+阅读 · 2021年7月11日
机器学习入门的经验与建议
专知会员服务
91+阅读 · 2019年10月10日
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
已删除
将门创投
7+阅读 · 2018年11月5日
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员