In this paper, we address the "dual problem" of multi-view scene reconstruction in which we utilize single-view images captured under different point lights to learn a neural scene representation. Different from existing single-view methods which can only recover a 2.5D scene representation (i.e., a normal / depth map for the visible surface), our method learns a neural reflectance field to represent the 3D geometry and BRDFs of a scene. Instead of relying on multi-view photo-consistency, our method exploits two information-rich monocular cues, namely shading and shadow, to infer scene geometry. Experiments on multiple challenging datasets show that our method is capable of recovering 3D geometry, including both visible and invisible parts, of a scene from single-view images. Thanks to the neural reflectance field representation, our method is robust to depth discontinuities. It supports applications like novel-view synthesis and relighting. Our code and model can be found at https://ywq.github.io/s3nerf.
翻译:在本文中,我们讨论了多视图场景重建的“双重问题”:我们使用在不同点光下拍摄的单视图图像来学习神经场景的演示。与现有的单视图方法不同,现有单视图方法只能恢复2.5D场场景的演示(即,可见表面的正常/深度映射),我们的方法学习了一个神经反射场以代表一个场景的三维几何和BRDF。我们的方法不是依靠多视图相容性,而是利用两个信息丰富的单镜头,即阴影和阴影,来推断场景的几何。关于多重挑战性数据集的实验显示,我们的方法能够从单一视图图像中恢复三维地貌,包括可见和无形部分。由于神经反射场的演示,我们的方法能够稳健地代表一个场景场景。它支持像新视图合成和重新点亮化这样的应用。我们的代码和模型可以在 https://ywq.github.io/s3nerf找到。