For finite integer squares, we consider the problem of learning a classification $I$ that respects Pareto domination. The setup is natural in dynamic programming settings. We show that a generalization of the binary search algorithm achieves an optimal $\theta(n)$ worst-case run time.
翻译:对于有限的整数方形,我们考虑的是学习尊重Pareto支配权的分类问题。设置在动态程序设置中是自然的。我们显示,二进制搜索算法的简单化可以实现最优的 $\theta(n)$(n) 最坏的运行时间。