In this paper we investigate the problems that Convolutional Neural Networks (CNN) based pose estimators have with symmetric objects. We find that the CNN's output representation has to form a closed loop when continuously rotating by one step of symmetry. Otherwise the CNN has to learn an uncontinuous function. On a 1-DOF toy example we show that commonly used representations do not fulfill this demand and analyze the problems caused thereby. In particular we find, that the popular min-over-symmetries approach for creating a symmetry aware loss tends not to work well with gradient based optimization, i.e. deep learning. We propose a representation called "closed symmetry loop"' (csl) from these insights, where the angle of relevant vectors is multiplied by the symmetry order and then generalize it to 6-DOF. The representation extends our previous algorithm including a method to disambiguate symmetric equivalents during the final pose estimation. The algorithm handles continuous rotational symmetry (i.e. a bottle) and discrete rotational symmetry (general boxes, boxes with a square face, uniform prims, but no cubes). It is evaluated on the T-LESS dataset.
翻译:在本文中,我们调查了以进化神经网络(CNN)为基础的神经网络(CNN)所构成的对称天体的测算结果。我们发现CNN的输出表示法在连续旋转时必须形成一个封闭的循环。 否则CNN必须学习一个不连续的函数。 在1-DOF玩具的例子中,我们显示常用的表示法不能满足这一需求,并分析由此造成的问题。特别是我们发现,为创建对称感知损失而流行的微调对称法往往与基于梯度的优化(即深层学习)不起作用。我们从这些洞察中建议一个称为“封闭的对称环(csl)”的表示法,其中相关矢量的角乘以对称顺序,然后将其概括到 6-DOF。 该表示法扩展了我们以前的算法,包括一种在最后的面值估测期间对称对称的对称方法。算法处理连续旋转的对称(i.stock)和离心的对立式数据框,但对立式的对立式的对立框是统一的对立式。