Probabilistic graphical models provide a flexible yet parsimonious framework for modeling dependencies among nodes in networks. There is a vast literature on parameter estimation and consistent model selection for graphical models. However, in many of the applications, scientists are also interested in quantifying the uncertainty associated with the estimated parameters and selected models, which current literature has not addressed thoroughly. In this paper, we propose a novel estimator for statistical inference on edge parameters in pairwise graphical models based on generalized Hyv\"arinen scoring rule. Hyv\"arinen scoring rule is especially useful in cases where the normalizing constant cannot be obtained efficiently in a closed form, which is a common problem for graphical models, including Ising models and truncated Gaussian graphical models. Our estimator allows us to perform statistical inference for general graphical models whereas the existing works mostly focus on statistical inference for Gaussian graphical models where finding normalizing constant is computationally tractable. Under mild conditions that are typically assumed in the literature for consistent estimation, we prove that our proposed estimator is $\sqrt{n}$-consistent and asymptotically normal, which allows us to construct confidence intervals and build hypothesis tests for edge parameters. Moreover, we show how our proposed method can be applied to test hypotheses that involve a large number of model parameters simultaneously. We illustrate validity of our estimator through extensive simulation studies on a diverse collection of data-generating processes.
翻译:概率性图形模型为网络节点之间的依赖性建模提供了一个灵活而模糊的框架。 关于参数估计和图形模型的一致模型选择, 有大量文献关于参数估计和一致模型选择的模型。 然而, 在许多应用中, 科学家也有兴趣量化与估计参数和选定模型有关的不确定性, 而当前文献尚未彻底解决这些不确定性。 在本文件中, 我们提出了一个基于通用 Hyv\'arinenn 评分规则的双向图形模型中边缘参数统计推断的新估算符。 Hyv\'arinen 评分规则对于无法以封闭形式有效获得正常化常数的常态常态值特别有用, 这是图形模型的共同问题, 包括Ising 模型和松散的高标图形模型。 我们的估测算让我们对一般图形模型进行统计推导, 而目前的工作则主要侧重于高斯图形模型的统计推推推导, 找到正常化常态常态常态常态的常态。 在文献中通常假设的低度参数下, 我们证明我们提议的定的常态常态常态常变常态常态常态常变常态常态常态常态常值常值常值常值常值常值常值常值常值常值常值常值常值,, 我们的测值的测值的测算的常值可使我们的测度性测测测测测测的测的测度性测度的测, 的测的测度可让我们性测度可使我们性测度可使我们的测度可让我们度, 。