A good empathetic dialogue system should first track and understand a user's emotion and then reply with an appropriate emotion. However, current approaches to this task either focus on improving the understanding of users' emotion or on proposing better responding strategies, and very few works consider both at the same time. Our work attempts to fill this vacancy. Inspired by task-oriented dialogue systems, we propose a novel empathetic response generation model with emotion-aware dialogue management. The emotion-aware dialogue management contains two parts: (1) Emotion state tracking maintains the current emotion state of the user and (2) Empathetic dialogue policy selection predicts a target emotion and a user's intent based on the results of the emotion state tracking. The predicted information is then used to guide the generation of responses. Experimental results show that dynamically managing different information can help the model generate more empathetic responses compared with several baselines under both automatic and human evaluations.
翻译:良好的同情对话系统应该首先跟踪和理解用户的情感,然后以适当的情感回应。 但是,目前处理这项任务的方法要么侧重于增进对用户情感的理解,要么侧重于提出更好的回应战略,很少有人同时考虑两者。 我们的工作试图填补这一空缺。 在以任务为导向的对话系统的启发下,我们提出了一个带有情感意识对话管理的新颖的同情反应生成模型。情感意识对话管理包含两个部分:(1) 情感状态跟踪保持了用户当前的情感状态,(2) 同情对话政策选择根据情绪状态跟踪的结果预测了目标情感和用户的意图。预测的信息随后被用于指导反应的产生。实验结果显示,动态管理不同信息可以帮助模型产生比自动和人文评估下的若干基线更具有同情性的反应。