When analyzing spectral data, it is effective to use spectral deconvolution, in which data with multiple peaks are expressed as a sum of basis functions to estimate parameters. In Bayesian spectral deconvolution, selecting an appropriate probabilistic model based on the situation is important. In this paper, we propose a new method of Bayesian spectral deconvolution based on a binomial distribution. Our method can be used in situations where data are given as proportions, such as in the measurement of absorption spectra. In this study, we compare our method with a Bayesian spectral deconvolution method based on a Poisson distribution, which is generally used for count data, and show that our method is useful for certain situations. Moreover, we show the effectiveness of our method in various situations.
翻译:在分析光谱数据时,使用光谱分解法是有效的,在光谱分解法中,用多重峰值表示数据,作为估计参数的基础功能的总和。在贝耶斯光谱分解法中,根据情况选择适当的概率模型很重要。在本文中,我们提出一种基于二元分布的新的贝耶斯光谱分解法。我们的方法可以用于给与数据比例的情况,例如吸收光谱的测量。在这项研究中,我们用一种基于普瓦森分布的巴耶斯光谱分解法比较我们的方法,这个方法通常用于计算数据,并表明我们的方法对特定情况有用。此外,我们还展示了我们方法在各种情况下的有效性。