Multitask learning is being increasingly adopted in applications domains like computer vision and reinforcement learning. However, optimally exploiting its advantages remains a major challenge due to the effect of negative transfer. Previous works have tracked down this issue to the disparities in gradient magnitudes and directions across tasks, when optimizing the shared network parameters. While recent work has acknowledged that negative transfer is a two-fold problem, existing approaches fall short as they only focus on either homogenizing the gradient magnitude across tasks; or greedily change the gradient directions, overlooking future conflicts. In this work, we introduce RotoGrad, an algorithm that tackles negative transfer as a whole: it jointly homogenizes gradient magnitudes and directions, while ensuring training convergence. We show that RotoGrad outperforms competing methods in complex problems, including multi-label classification in CelebA and computer vision tasks in the NYUv2 dataset. A Pytorch implementation can be found in https://github.com/adrianjav/rotograd .


翻译:多任务学习越来越多地在计算机视野和强化学习等应用领域被采用。然而,由于负面转移的影响,最佳利用优势仍然是一项重大挑战。在优化共享网络参数时,以往的工作跟踪了这一问题,发现各任务之间在梯度大小和方向上的差异。虽然最近的工作承认负转移是一个双重问题,但现有方法尚不尽如人意,因为它们只侧重于使跨任务梯度数值趋同;或贪婪地改变梯度方向,忽略未来冲突。在这项工作中,我们引入了罗托格拉德(RotoGrad)这一算法,该算法处理整个负转移:它共同将梯度大小和方向同化,同时确保培训趋同。我们展示了罗托格拉德在复杂问题上的相互竞争方法,包括CelebA的多标签分类和NYUv2数据集的计算机视觉任务。可在https://github.com/adrianjav/rotograd中找到一个Pytorch 。

0
下载
关闭预览

相关内容

MIT-深度学习Deep Learning State of the Art in 2020,87页ppt
专知会员服务
62+阅读 · 2020年2月17日
【斯坦福大学】Gradient Surgery for Multi-Task Learning
专知会员服务
47+阅读 · 2020年1月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
已删除
AI掘金志
7+阅读 · 2019年7月8日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
7+阅读 · 2021年5月25日
Arxiv
9+阅读 · 2019年4月19日
Relational Deep Reinforcement Learning
Arxiv
10+阅读 · 2018年6月28日
Arxiv
7+阅读 · 2018年5月23日
Arxiv
19+阅读 · 2018年3月28日
VIP会员
相关资讯
已删除
AI掘金志
7+阅读 · 2019年7月8日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
相关论文
Top
微信扫码咨询专知VIP会员