In this paper we present \emph{PoliFL}, a decentralized, edge-based framework that supports heterogeneous privacy policies for federated learning. We evaluate our system on three use cases that train models with sensitive user data collected by mobile phones -- predictive text, image classification, and notification engagement prediction -- on a Raspberry~Pi edge device. We find that PoliFL is able to perform accurate model training and inference within reasonable resource and time budgets while also enforcing heterogeneous privacy policies.
翻译:在本文中,我们介绍了一个分散的、以边缘为基础的框架,它支持各种隐私政策,供联邦学习使用。我们评估了三个使用的案例,即用移动电话收集的敏感用户数据来培训模型的三种使用案例 -- -- 预测文本、图像分类和通知使用预测 -- -- 在Raspberry~Pi边缘装置上。我们发现,PoliFL能够在合理的资源和预算范围内进行准确的模型培训和推论,同时执行多种隐私政策。