Physical activity patterns can be informative about a patient's health status. Traditionally, activity data have been gathered using patient self-report. However, these subjective data can suffer from bias and are difficult to collect over long time periods. Smartphones offer an opportunity to address these challenges. The smartphone has built-in sensors that can be programmed to collect data objectively, unobtrusively, and continuously. Due to their widespread adoption, smartphones are also accessible to most of the population. A main challenge in smartphone-based activity recognition is extracting information optimally from multiple sensors to identify the unique features of different activities. In our study, we analyze data collected by the accelerometer and gyroscope, which measure the phone's acceleration and angular velocity, respectively. We propose an extension to the "movelet method" that jointly incorporates both sensors. We also apply this joint-sensor method to a data set we collected previously. The findings show that combining data from the two sensors can result in more accurate activity recognition than using each sensor alone. For example, the joint-sensor method reduces errors of the gyroscope-only method in differentiating between standing and sitting. It also reduces errors of the accelerometer-only method in classifying vigorous activities.


翻译:物理活动模式可以了解患者的健康状况。 传统上, 使用患者自我报告来收集活动数据, 但是, 这些主观数据可能会有偏差, 并且难以长期收集。 智能手机为应对这些挑战提供了一个机会。 智能手机有内置传感器, 可以客观、 不受干扰和连续地收集数据。 由于它们被广泛采用, 智能手机也可以为大多数人口所使用。 智能手机活动识别方面的一个主要挑战是从多个传感器中提取信息, 以最佳的方式识别不同活动的独特性。 例如, 在我们的研究中, 我们分析由加速仪和陀螺仪收集的数据, 这些数据分别测量电话的加速度和角速度。 我们建议扩展“ 移动方法”, 以客观、 不受干扰和 连续地收集数据。 我们还将这种联合传感器方法应用于我们以前收集的数据集。 调查结果显示, 将两个传感器的数据合并起来, 能够比单独使用每个传感器更准确的活动识别活动特征。 例如, 联合传感器方法可以减少频率仪仪的误差, 并降低它在静态和稳性测量活动中的误差。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
163+阅读 · 2020年3月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
149+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月14日
VIP会员
相关VIP内容
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员