In this paper, we develop a general theory for adaptive nonparametric estimation of mean functions of nonstationary and nonlinear time series using deep neural networks (DNNs). We first consider two types of DNN estimators, non-penalized and sparse-penalized DNN estimators, and establish their generalization error bounds for general nonstationary time series. We then derive minimax lower bounds for estimating mean functions belonging to a wide class of nonlinear autoregressive (AR) models that include nonlinear generalized additive AR, single index, and threshold AR models. Building upon the results, we show that the sparse-penalized DNN estimator is adaptive and attains the minimax optimal rates up to a poly-logarithmic factor for many nonlinear AR models. Through numerical simulations, we demonstrate the usefulness of the DNN methods for estimating nonlinear AR models with intrinsic low-dimensional structures and discontinuous or rough mean functions, which is consistent with our theory.
翻译:在本文中,我们用深神经网络(DNN)为非静止和非线性时间序列的中值函数的适应性非参数估计开发了一个通用理论。我们首先考虑两种DNN测算器,即非消耗型和分散的消耗型DNND测算器,并确立一般非静止时间序列的一般误差界限。然后,我们得出微缩的下限,用于估计属于非线性自动递增型(AR)大类模型的中值函数,其中包括非线性通用添加剂AR、单一指数和阈值AR模型。我们根据这些结果,表明分散的DNNNS测算器是适应性的,并达到微型成微模量最佳速率,达到许多非线性AR模型的多对数系数。我们通过数字模拟,展示DNNN方法对于估算具有内在低维结构和不连续或粗度的非线性中值模型的作用,这符合我们的理论。