Deep Reinforcement Learning (DRL) is being increasingly applied to the problem of resource allocation for emerging System-on-Chip (SoC) applications, and has shown remarkable promises. In this paper, we introduce SoCRATES (SoC Resource AdapTivE Scheduler), an extremely efficient DRL-based SoC scheduler which maps a wide range of hierarchical jobs to heterogeneous resources within SoC using the Eclectic Interaction Matching (EIM) technique. It is noted that the majority of SoC resource management approaches have been targeting makespan minimization with fixed number of jobs in the system. In contrast, SoCRATES aims at minimizing average latency in a steady-state condition while assigning tasks in the ready queue to heterogeneous resources (processing elements). We first show that existing DRL-based schedulers developed with the makespan minimization objective are ineffective for the latency-minimization-driven SoC applications due to their characteristics such as high-frequency job workload and distributed/parallel job execution. We then demonstrate that through its EIM technique, SoCRATES successfully addresses the challenge of concurrent observations caused by the task dependency inherent in the latency minimization objective. Extensive tests show that SoCRATES outperforms other existing neural and non-neural schedulers with as high as 38% gain in latency reduction under a variety of job types, queue length, and incoming rates. The resulting model is also compact in size and has very favorable energy consumption behaviors, making it highly practical for deployment in future SoC systems with built-in neural accelerator.


翻译:深度强化学习(DRL)正越来越多地应用于新兴的系统芯片(SOC)应用程序的资源分配问题,并展示了令人瞩目的承诺。在本文中,我们引入了SCRATES(SoC Resource AdapTivE 调度器),这是一个以DRL为基础的非常高效的SOC调度器,该调度器利用电磁互动匹配(EIM)技术绘制了多种等级工作图,用于在SoC内部的多样化资源。人们注意到,大多数 SoC资源管理方法都以系统固定数量的工作岗位为目标,使实际最小化。相比之下,SOCRATES的目标是在稳定状态条件下将平均延迟的幅度最小化,同时将准备的排队中的任务分配给混合的资源(处理元素)。我们首先显示,现有的基于DRL的排程与最小化目标一起开发的排队,对于由于高频度工作模式工作量和分布/弹性工作执行等特点,对于长期性工作执行来说是无效的。我们随后通过 EIM 技术,SoCRATES成功地应对了当前观测在稳定状态下造成的平均递延耗耗力挑战。

0
下载
关闭预览

相关内容

古希腊哲学家,和其学生柏拉图及柏拉图的学生亚里士多德被并称为希腊三哲人。他被后人广泛认为是西方哲学的奠基者。 苏格拉底相信「理想存在于一个只有智者才能了解的世界」。
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
108+阅读 · 2020年6月10日
【新书】深度学习搜索,Deep Learning for Search,附327页pdf
专知会员服务
208+阅读 · 2020年1月13日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
5+阅读 · 2020年6月16日
Accelerated Methods for Deep Reinforcement Learning
Arxiv
6+阅读 · 2019年1月10日
Arxiv
3+阅读 · 2018年10月5日
Hierarchical Deep Multiagent Reinforcement Learning
Arxiv
8+阅读 · 2018年9月25日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员