We consider online $k$-means clustering where each new point is assigned to the nearest cluster center, after which the algorithm may update its centers. The loss incurred is the sum of squared distances from new points to their assigned cluster centers. The goal over a data stream $X$ is to achieve loss that is a constant factor of $L(X, OPT_k)$, the best possible loss using $k$ fixed points in hindsight. We propose a data parameter, $\Lambda(X)$, such that for any algorithm maintaining $O(k\text{poly}(\log n))$ centers at time $n$, there exists a data stream $X$ for which a loss of $\Omega(\Lambda(X))$ is inevitable. We then give a randomized algorithm that achieves clustering loss $O(\Lambda(X) + L(X, OPT_k))$. Our algorithm uses $O(k\text{poly}(\log n))$ memory and maintains $O(k\text{poly}(\log n))$ cluster centers. Our algorithm also enjoys a running time of $O(k\text{poly}(\log n))$ and is the first algorithm to achieve polynomial space and time complexity in this setting. It also is the first to have provable guarantees without making any assumptions on the input data.


翻译:我们考虑将每个新点分配到最近的集群中心时, 算法可以更新其中心。 所造成的损失是从新点到指定集集中心的平方距离总和。 数据流美元X$的目标是实现一个恒定因数$( X, Obta_k) 的损失, 也就是使用后视中固定点的美元( X) 最可能的损失。 我们提出一个数据参数, $\Lambda( X) 美元。 我们的算法使用一个数据参数, $( k\ text{poly} (\log n) 美元, 任何维持美元( ktext{poly} (\log n) 中心的算法, 美元时值为美元( ktext{ poly} 中心), 有数据流美元X$( lax), 其损失是不可避免的。 我们的随机算法, 将美元(\\ lambda( X, + L( X, ) ltem_k) $。 我们的算法也使用$( ktext{ pro) laimal) maxal lax 和neximal max max max max 。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年9月29日
Arxiv
0+阅读 · 2022年9月28日
Arxiv
0+阅读 · 2022年9月28日
Arxiv
11+阅读 · 2021年3月25日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员