Intelligent voice assistants, such as Apple Siri and Amazon Alexa, are widely used nowadays. These task-oriented dialog systems require a semantic parsing module in order to process user utterances and understand the action to be performed. This semantic parsing component was initially implemented by rule-based or statistical slot-filling approaches for processing simple queries; however, the appearance of more complex utterances demanded the application of shift-reduce parsers or sequence-to-sequence models. While shift-reduce approaches initially demonstrated to be the best option, recent efforts on sequence-to-sequence systems pushed them to become the highest-performing method for that task. In this article, we advance the research on shift-reduce semantic parsing for task-oriented dialog. In particular, we implement novel shift-reduce parsers that rely on Stack-Transformers. These allow to adequately model transition systems on the cutting-edge Transformer architecture, notably boosting shift-reduce parsing performance. Additionally, we adapt alternative transition systems from constituency parsing to task-oriented parsing, and empirically prove that the in-order algorithm substantially outperforms the commonly-used top-down strategy. Finally, we extensively test our approach on multiple domains from the Facebook TOP benchmark, improving over existing shift-reduce parsers and state-of-the-art sequence-to-sequence models in both high-resource and low-resource settings.
翻译:智能语音助理, 如苹果 Siri 和 亚马逊 Alexa 等智能化的声音助理, 如今已被广泛使用。 这些面向任务的对话系统需要一个语义分析模块, 以便处理用户的语义分析, 并理解要执行的行动。 这个语义分析组件最初是通过基于规则或统计空档的填充方法实施的, 用于处理简单的查询; 但是, 更复杂的语句的外观要求应用更尖端的变压器或序列到序列模型。 虽然转换方法最初被证明是最好的选择, 最近关于顺序到序列系统的努力促使这些系统成为完成这项任务的最高性能方法。 在本篇文章中, 我们推进关于转换- 降动语义分解部分的研究, 用于处理简单的查询; 特别是, 我们采用新的变压分数分解器。 这使得在最尖端的变压器结构中, 特别是提升变压式的低比值分析功能。 此外, 我们从选区的变压到任务- 重定序的系统, 最终测试到我们高层次的系统。