Sublinear time algorithms for approximating maximum matching size have long been studied. Much of the progress over the last two decades on this problem has been on the algorithmic side. For instance, an algorithm of Behnezhad [FOCS'21] obtains a 1/2-approximation in $\tilde{O}(n)$ time for $n$-vertex graphs. A more recent algorithm by Behnezhad, Roghani, Rubinstein, and Saberi [SODA'23] obtains a slightly-better-than-1/2 approximation in $O(n^{1+\epsilon})$ time. On the lower bound side, Parnas and Ron [TCS'07] showed 15 years ago that obtaining any constant approximation of maximum matching size requires $\Omega(n)$ time. Proving any super-linear in $n$ lower bound, even for $(1-\epsilon)$-approximations, has remained elusive since then. In this paper, we prove the first super-linear in $n$ lower bound for this problem. We show that at least $n^{1.2 - o(1)}$ queries in the adjacency list model are needed for obtaining a $(\frac{2}{3} + \Omega(1))$-approximation of maximum matching size. This holds even if the graph is bipartite and is promised to have a matching of size $\Theta(n)$. Our lower bound argument builds on techniques such as correlation decay that to our knowledge have not been used before in proving sublinear time lower bounds. We complement our lower bound by presenting two algorithms that run in strongly sublinear time of $n^{2-\Omega(1)}$. The first algorithm achieves a $(\frac{2}{3}-\epsilon)$-approximation; this significantly improves prior close-to-1/2 approximations. Our second algorithm obtains an even better approximation factor of $(\frac{2}{3}+\Omega(1))$ for bipartite graphs. This breaks the prevalent $2/3$-approximation barrier and importantly shows that our $n^{1.2-o(1)}$ time lower bound for $(\frac{2}{3}+\Omega(1))$-approximations cannot be improved all the way to $n^{2-o(1)}$.


翻译:用于接近最大匹配规模的亚线时间算法 {1.2 长期研究。 在过去20年中, 这个问题上的大部分进展都在算法方面。 例如, Behnezhad [FOCS'21] 的算法在$\ tilde{O} (n) 美元上取得了1/2 的一致。 由Behnezhad、 Roghani、 Rubinstein 和 Saberi [SODA'23] 提供的较新的算法在美元( n=1) 3 美元上略高于-1/2 的近距离; 由Behnez 3 的算法在运算法方面进展相当大; 例如, 由Parnas 和 Ron [TCS'07] 获得最大匹配规模的一致值,需要$(m) 美元(n) 。 以美元( 美元) 预估测任何超线值的算法, 即使是$( i- licl) 美元(l) 和 美元(dro) codeal) 23 的算, 自那时, 我们的第一次的算上, 美元(l=1美元===xxxxxxxx 需要的比现在更需要的显示。

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
50+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年1月27日
VIP会员
相关VIP内容
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
50+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员