We prove several optimal-order error estimates for a finite-element method applied to an inhomogeneous Robin boundary value problem (BVP) for the Poisson equation defined in a smooth bounded domain in $\mathbb{R}^n$, $n=2,3$. The boundary condition is weakly imposed using Nitsche's method. The Robin BVP is interpreted as the classical penalty method with the penalty parameter $\varepsilon$. The optimal choice of the mesh size $h$ relative to $\varepsilon$ is a non-trivial issue. This paper carefully examines the dependence of $\varepsilon$ on error estimates. Our error estimates require no unessential regularity assumptions on the solution. Numerical examples are also reported to confirm our results.


翻译:我们证明,对于在平滑的封闭域内定义的Poisson方程式, 以$\mathbb{R ⁇ {R ⁇ }$=2,3美元界定的Poisson 方程式,适用于不相容的Robin边界值问题(BVP)的有限元素方法,有几个最优顺序误差估计。使用Nitsche的方法,边界条件是微弱的。Robin BVP被解释为典型的惩罚方法,有惩罚参数$\varepsilon$。最佳选择的网目尺寸($h)相对于$\varepsilon$($\varepsilon$)是一个非三重问题。本文仔细审查了$\varepslon$对误差估计数的依赖性。我们的误差估计不需要非必要的常规假设。还报告了一些数字例子来证实我们的结果。

0
下载
关闭预览

相关内容

专知会员服务
26+阅读 · 2021年4月2日
专知会员服务
51+阅读 · 2020年12月14日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关VIP内容
专知会员服务
26+阅读 · 2021年4月2日
专知会员服务
51+阅读 · 2020年12月14日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员