We present our experience as annotators in the creation of high-quality, adversarial machine-reading-comprehension data for extractive QA for Task 1 of the First Workshop on Dynamic Adversarial Data Collection (DADC). DADC is an emergent data collection paradigm with both models and humans in the loop. We set up a quasi-experimental annotation design and perform quantitative analyses across groups with different numbers of annotators focusing on successful adversarial attacks, cost analysis, and annotator confidence correlation. We further perform a qualitative analysis of our perceived difficulty of the task given the different topics of the passages in our dataset and conclude with recommendations and suggestions that might be of value to people working on future DADC tasks and related annotation interfaces.
翻译:我们作为说明者介绍了我们的经验,为动态反向数据收集(DDC)第一次讲习班任务1的采掘质量评估创建高质量、对抗性机读全面数据的经验,DDC是一个新兴的数据收集模式,既有模型,也有人进入循环,我们设置了半实验性说明设计,对各类群体进行了数量不等的定量分析,侧重于成功的对抗性攻击、成本分析和说明者信心相关关系。我们进一步从质量上分析了我们考虑到我们数据集各部分的不同主题而认为任务存在的困难,并在结论中提出了可能对从事DDC未来任务和相关说明界面的人有价值的建议和提议。