Noisy neural networks (NoisyNNs) refer to the inference and training of NNs in the presence of noise. Noise is inherent in most communication and storage systems; hence, NoisyNNs emerge in many new applications, including federated edge learning, where wireless devices collaboratively train a NN over a noisy wireless channel, or when NNs are implemented/stored in an analog storage medium. This paper studies a fundamental problem of NoisyNNs: how to estimate the uncontaminated NN weights from their noisy observations or manifestations. Whereas all prior works relied on the maximum likelihood (ML) estimation to maximize the likelihood function of the estimated NN weights, this paper demonstrates that the ML estimator is in general suboptimal. To overcome the suboptimality of the conventional ML estimator, we put forth an $\text{MMSE}_{pb}$ estimator to minimize a compensated mean squared error (MSE) with a population compensator and a bias compensator. Our approach works well for NoisyNNs arising in both 1) noisy inference, where noise is introduced only in the inference phase on the already-trained NN weights; and 2) noisy training, where noise is introduced over the course of training. Extensive experiments on the CIFAR-10 and SST-2 datasets with different NN architectures verify the significant performance gains of the $\text{MMSE}_{pb}$ estimator over the ML estimator when used to denoise the NoisyNN. For noisy inference, the average gains are up to $156\%$ for a noisy ResNet34 model and $14.7\%$ for a noisy BERT model; for noisy training, the average gains are up to $18.1$ dB for a noisy ResNet18 model.


翻译:诺伊神经网络(Noisy neal networks) 指的是NNS在噪音面前的推论和培训。 噪音是大多数通信和储存系统所固有的; 因此, NoisyNNNNs出现在许多新的应用中, 包括联合边缘学习, 无线装置在无线频道上合作训练NNN, 或者在模拟存储介质中执行/储存NNNs。 本文研究NoisyNNs的一个基本问题 : 如何估计其噪音观测或表现中未受污染的NNS重量 。 虽然所有先前的工程都依赖于最大可能性( ML) 估计, 以最大限度地增加估计NNNS重量的可能性; 本文表明, ML 估计显示 ML 处于一般亚性之下。 为了克服常规 MLSestators 的亚性, 我们提出了一个 $@ textlevelople res resulate democial a modemodeal more more a mocial mology, moalal moalal money a money money money money moudal dest the the mocial dreal dreal mocial mocial dest the mocial dre moal moal moal moal dreal momental moal moal momental moal moal moments on the momental momental momental momental momental momental)

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年10月31日
最新《生成式对抗网络》简介,25页ppt
专知会员服务
173+阅读 · 2020年6月28日
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
31+阅读 · 2020年4月15日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
150+阅读 · 2019年10月12日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
已删除
将门创投
5+阅读 · 2018年7月25日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
自然语言处理(二)机器翻译 篇 (NLP: machine translation)
DeepLearning中文论坛
10+阅读 · 2015年7月1日
Arxiv
6+阅读 · 2018年10月3日
Arxiv
19+阅读 · 2018年6月27日
VIP会员
相关资讯
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
已删除
将门创投
5+阅读 · 2018年7月25日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
自然语言处理(二)机器翻译 篇 (NLP: machine translation)
DeepLearning中文论坛
10+阅读 · 2015年7月1日
Top
微信扫码咨询专知VIP会员