We investigate the effectiveness of convex relaxation and nonconvex optimization in solving bilinear systems of equations under two different designs (i.e.$~$a sort of random Fourier design and Gaussian design). Despite the wide applicability, the theoretical understanding about these two paradigms remains largely inadequate in the presence of random noise. The current paper makes two contributions by demonstrating that: (1) a two-stage nonconvex algorithm attains minimax-optimal accuracy within a logarithmic number of iterations. (2) convex relaxation also achieves minimax-optimal statistical accuracy vis-\`a-vis random noise. Both results significantly improve upon the state-of-the-art theoretical guarantees.
翻译:我们调查了在两种不同设计下解决双线式方程式系统(即:美元~某一种随机Fleier设计和高斯设计)的双线式系统(即:美元~某一种随机Fleier设计和高斯设计)的松绑和非节流优化的效果。 尽管具有广泛适用性,但对于这两种模式的理论理解在出现随机噪音的情况下仍然远远不够。 本文通过表明:(1)两阶段非节流算法在对数迭代中达到微量最大精确度。 (2) 共线松绑还实现了相对于随机噪音的最小最大统计准确性。 这两种结果都大大改进了最先进的理论保证。