We develop the compositional theory of active inference by introducing activity, functorially relating statistical games to the dynamical systems which play them, using the new notion of approximate inference doctrine. In order to exhibit such functors, we first develop the necessary theory of dynamical systems, using a generalization of the language of polynomial functors to supply compositional interfaces of the required types: with the resulting polynomially indexed categories of coalgebras, we construct monoidal bicategories of differential and dynamical ``hierarchical inference systems'', in which approximate inference doctrines have semantics. We then describe ``externally parameterized'' statistical games, and use them to construct two approximate inference doctrines found in the computational neuroscience literature, which we call the `Laplace' and the `Hebb-Laplace' doctrines: the former produces dynamical systems which optimize the posteriors of Gaussian models; and the latter produces systems which additionally optimize the parameters (or `weights') which determine their predictions.
翻译:我们通过引入活动,将统计游戏与播放这些游戏的动态系统相交,利用近似推理学的新概念,发展了积极推论的构成理论。为了展示这种真菌学说,我们首先开发了动态系统的必要理论,使用多分子真菌菌的通用语言来提供所需类型的构成界面:通过由此形成的多分子化的煤星系分类,我们构建了差异和动态“等级推理系统”的单自相残杀的二类,其中近似推理学有语义。我们然后描述“外部参数化”统计游戏,并用它们来构建计算神经科学文献中发现的两个大概推理学,我们称之为“Laplace”和“Hebb-Laplace”理论:前者产生动态系统,以优化高斯模型的远洋底体;后者产生额外优化参数(或`重量')的系统,用以决定其预测。