Graph Neural Networks (GNNs) are learning models aimed at processing graphs and signals on graphs. The most popular and successful GNNs are based on message passing schemes. Such schemes inherently have limited expressive power when it comes to distinguishing two non-isomorphic graphs. In this article, we rely on the theory of covering spaces to fully characterize the classes of graphs that GNNs cannot distinguish. We then generate arbitrarily many non-isomorphic graphs that cannot be distinguished by GNNs, leading to the GraphCovers dataset. We also show that the number of indistinguishable graphs in our dataset grows super-exponentially with the number of nodes. Finally, we test the GraphCovers dataset on several GNN architectures, showing that none of them can distinguish any two graphs it contains.
翻译:神经网络图( GNN) 是旨在处理图形和图中信号的学习模型。 最受欢迎和最成功的GNN是建立在传递信息计划基础上的。 这些计划在区分两个非线状图时本身具有有限的表达力。 在本篇文章中, 我们依靠覆盖空间的理论来充分描述GNN无法区分的图表类别。 然后我们产生许多无法被GNNS区分的非线状图, 导致图形覆盖数据集。 我们还显示, 我们的数据集中无法区分的图形数量与节点数量相比, 具有超显性。 最后, 我们测试几个GNNN的图形群数据集, 显示其中没有任何一个能够区分它包含的任何两个图集 。