Task-based programming models have risen in popularity as an alternative to traditional fork-join parallelism. They are better suited to write applications with irregular parallelism that can present load imbalance. However, these programming models suffer from overheads related to task creation, scheduling and dependency management, limiting performance and scalability when tasks become too small. At the same time, many HPC applications implement iterative methods or multi-step simulations that create the same directed acyclic graphs of tasks on each iteration. By giving application programmers a way to express that a specific loop is creating the same task pattern on each iteration, we can create a single task DAG once and transform it into a cyclic graph. This cyclic graph is then reused for successive iterations, minimizing task creation and dependency management overhead. This paper presents the taskiter, a new construct we propose for the OmpSs-2 and OpenMP programming models, allowing the use of directed cyclic task graphs (DCTG) to minimize runtime overheads. Moreover, we present a simple immediate successor locality-aware heuristic that minimizes task scheduling overhead by bypassing the runtime task scheduler. We evaluate the implementation of the taskiter and the immediate successor heuristic in 8 iterative benchmarks. Using small task granularities, we obtain an average speedup of 3.7x over the reference OmpSs-2 implementation and an average of 5x and 7.46x speedup over the LLVM and GCC OpenMP runtimes, respectively.


翻译:以任务为基础的编程模型作为传统的叉和叉和交叉平行主义的替代方法,越来越受欢迎,更适合以非常规平行方式编写可显示负荷不平衡的应用程序;然而,这些编程模型受到与任务创建、时间安排和依赖管理有关的间接费用的影响,在任务规模过小时限制了性能和可缩放性;同时,许多高常委会应用程序采用迭代方法或多步模拟,在每次迭代上生成相同的定向周期性任务图;让应用程序程序员能够表达具体循环正在为每次迭代创建相同的任务模式,我们就可以一次性创建单一任务DAG并将其转换为循环图;该循环图随后被再用于连续的迭代,尽量减少任务创建和依赖管理管理管理间接费用;本文介绍了任务标准,我们为OmpS-2和OpenMP编程模型建议了一个新的结构,以便使用定向周期性任务图(DCTG)来最大限度地减少运行时的间接费用;此外,我们展示了一个简单的后继地点感参照系统,以便分别通过连续的Lex-II任务进度表和S-Slassimal标准来尽量减少执行任务进度。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2021年6月30日
专知会员服务
39+阅读 · 2020年9月6日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年8月18日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
12+阅读 · 2019年3月14日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年8月18日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员