Automatic differentiation (AD) aims to compute derivatives of user-defined functions, but in Turing-complete languages, this simple specification does not fully capture AD's behavior: AD sometimes disagrees with the true derivative of a differentiable program, and when AD is applied to non-differentiable or effectful programs, it is unclear what guarantees (if any) hold of the resulting code. We study an expressive differentiable programming language, with piecewise-analytic primitives, higher-order functions, and general recursion. Our main result is that even in this general setting, a version of Lee et al. [2020]'s correctness theorem (originally proven for a first-order language without partiality or recursion) holds: all programs denote so-called $\omega$PAP functions, and AD computes correct intensional derivatives of them. Mazza and Pagani [2021]'s recent theorem, that AD disagrees with the true derivative of a differentiable recursive program at a measure-zero set of inputs, can be derived as a straightforward corollary of this fact. We also apply the framework to study probabilistic programs, and recover a recent result from Mak et al. [2021] via a novel denotational argument.


翻译:自动区分( AD) 旨在计算用户定义函数的衍生物, 但是在图灵- 完整的语言中, 这个简单的规格并不能完全捕捉AD的行为: AD有时不同意一个不同程序的真正衍生物, 当AD应用到非差别化或效果化的程序时, 并不清楚AD持有的源代码是什么( 如果有的话 ) 。 我们研究一种表达式不同的编程语言, 使用片段分析原始、 较高顺序函数和一般循环。 我们的主要结果是, 即使在这个总体环境中, 李等人( Lee et al. [2020] 的正确性理论版本( 最初被证明为没有偏向性或复现性的第一阶语言) 也可以作为这个事实的直截了当的必然结果产生: 所有方案都指所谓的$\ omega$PAP 函数, 而 ADDB 包含正确的强化衍生物。 Mazza 和 Pagani [ 2021] 最近的一些理论, ad 与一个可辨别的重复性程序的真实衍生物, 在一个计量- 零的输入组中, 。

0
下载
关闭预览

相关内容

专知会员服务
28+阅读 · 2021年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Linguistically Regularized LSTMs for Sentiment Classification
黑龙江大学自然语言处理实验室
8+阅读 · 2018年5月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
自然语言处理 (NLP)资源大全
机械鸡
35+阅读 · 2017年9月17日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Arxiv
0+阅读 · 2022年2月13日
Improved Compression of the Okamura-Seymour Metric
Arxiv
0+阅读 · 2022年2月10日
Arxiv
0+阅读 · 2022年2月10日
VIP会员
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Linguistically Regularized LSTMs for Sentiment Classification
黑龙江大学自然语言处理实验室
8+阅读 · 2018年5月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
自然语言处理 (NLP)资源大全
机械鸡
35+阅读 · 2017年9月17日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Top
微信扫码咨询专知VIP会员