Deep learning approaches have shown promising results in remote sensing high spatial resolution (HSR) land-cover mapping. However, urban and rural scenes can show completely different geographical landscapes, and the inadequate generalizability of these algorithms hinders city-level or national-level mapping. Most of the existing HSR land-cover datasets mainly promote the research of learning semantic representation, thereby ignoring the model transferability. In this paper, we introduce the Land-cOVEr Domain Adaptive semantic segmentation (LoveDA) dataset to advance semantic and transferable learning. The LoveDA dataset contains 5987 HSR images with 166768 annotated objects from three different cities. Compared to the existing datasets, the LoveDA dataset encompasses two domains (urban and rural), which brings considerable challenges due to the: 1) multi-scale objects; 2) complex background samples; and 3) inconsistent class distributions. The LoveDA dataset is suitable for both land-cover semantic segmentation and unsupervised domain adaptation (UDA) tasks. Accordingly, we benchmarked the LoveDA dataset on eleven semantic segmentation methods and eight UDA methods. Some exploratory studies including multi-scale architectures and strategies, additional background supervision, and pseudo-label analysis were also carried out to address these challenges. The code and data are available at https://github.com/Junjue-Wang/LoveDA.
翻译:深层学习方法在遥感高空间分辨率(HSR)土地覆盖图绘制方面显示了可喜的成果,然而,城市和农村的场景可以显示完全不同的地理景观,这些算法的不全面性妨碍了城市一级或国家一级制图工作。大多数现有的HSR土地覆盖数据集主要促进了学习语义表达方式的研究,从而忽略了模式的可转移性。我们在本文件中引入了LOVEER 继续适应性语义分解(LovedDA)数据集,以推进语义学和可转让学习。 LoveDA数据集包含5987 HSR图像,166768是三个不同城市的附加说明对象。与现有的数据集相比,LovedDA数据集包含两个领域(城市和农村),这带来了相当大的挑战,因为:(1) 多尺度物体;(2)复杂的背景样本;和(3)不协调的阶级分布。 LoveDA数据集既适合土地覆盖语义分解(LovDA)数据集,也适合不受监督的域适应(UDA)任务。因此,我们将LiveDA数据集的数据集以11个语言分解/多段/可使用的方法作为基准,这些分析的方法和八种数据解算法。这些方法包括进行背景分析。