A recent line of research investigates how algorithms can be augmented with machine-learned predictions to overcome worst case lower bounds. This area has revealed interesting algorithmic insights into problems, with particular success in the design of competitive online algorithms. However, the question of improving algorithm running times with predictions has largely been unexplored. We take a first step in this direction by combining the idea of machine-learned predictions with the idea of "warm-starting" primal-dual algorithms. We consider one of the most important primitives in combinatorial optimization: weighted bipartite matching and its generalization to $b$-matching. We identify three key challenges when using learned dual variables in a primal-dual algorithm. First, predicted duals may be infeasible, so we give an algorithm that efficiently maps predicted infeasible duals to nearby feasible solutions. Second, once the duals are feasible, they may not be optimal, so we show that they can be used to quickly find an optimal solution. Finally, such predictions are useful only if they can be learned, so we show that the problem of learning duals for matching has low sample complexity. We validate our theoretical findings through experiments on both real and synthetic data. As a result we give a rigorous, practical, and empirically effective method to compute bipartite matchings.
翻译:最近的一系列研究调查了如何用机器学的预测来扩大算法,以克服最差的病例下限。 这个领域揭示了对问题的有趣的算法洞察力, 特别是在设计竞争性在线算法方面。 但是, 改进算法运行时间的问题与预测基本上没有被探讨出来。 我们在这方面迈出了第一步, 将机器学预测的概念与“ 启动” 原始- 双重算法的概念结合起来。 我们认为, 组合优化中最重要的原始方法之一 : 加权双方匹配及其概括化为$b$- 配对。 当在原始- 双向算法中使用学习过的双重变量时, 我们发现了三个关键的挑战。 首先, 预测的双重变量可能是不可行的, 因此我们给出了一种算法, 高效地将不可行的二元预测与附近可行的解决方案结合起来。 其次, 一旦两元组合法可行, 它们可能不是最佳的, 因此我们证明它们可以很快地用来找到一个最佳的解决方案。 最后, 这种预测是有用的, 只有当它们能够学到的话, 我们才能找出三个关键的双重变量。 因此, 我们用一个有效的双轨方法来学习一个真正的 。