This paper provides a canonical construction of a Noetherian least fixed point topology. While such least fixed point are not Noetherian in general, we prove that under a mild assumption, one can use a topological minimal bad sequence argument to prove that they are. We then apply this fixed point theorem to rebuild known Noetherian topologies with a uniform proof. In the case of spaces that are defined inductively (such as finite words and finite trees), we provide a uniform definition of a divisibility topology using our fixed point theorem. We then prove that the divisibility topology is a generalisation of the divisibility preorder introduced by Hasegawa in the case of well-quasi-orders.
翻译:本文对诺埃特里亚最不固定的定点地貌作了一个粗略的构造。 虽然这种最不固定的点并不是一般的诺特里亚, 但我们可以证明,根据一种温和的假设, 可以用一个最差的地貌来证明它们的存在。 然后我们用这个固定点的定点来用一个统一的证明来重建已知的诺特里亚地貌。 对于用感化方式界定的空间(例如有限的单词和有限的树木), 我们用我们固定的定点的定点来对可分的地貌作出统一的定义。 然后, 我们证明, 半透明性地貌是长谷川在井水系中引入的可分位前令的概括性。