Solving polynomial eigenvalue problems with eigenvector nonlinearities (PEPv) is an interesting computational challenge, outside the reach of the well-developed methods for nonlinear eigenvalue problems. We present a natural generalization of these methods which leads to a contour integration approach for computing all eigenvalues of a PEPv in a compact region of the complex plane. Our methods can be used to solve any suitably generic system of polynomial or rational function equations.
翻译:解决非直线性非直线性非直径性(PEPv)的多元元值问题是一个令人感兴趣的计算挑战,超出了非直线性亚值问题成熟方法的范围。我们对这些方法进行了自然的概括化,从而形成一种等同集成法,用于在复杂平面的紧凑区域计算PEPv的所有元值。我们的方法可以用来解决任何合适的多线性或理性函数方程式通用系统。