Unsupervised out-of-distribution detection (OOD) seeks to identify out-of-domain data by learning only from unlabeled in-domain data. We present a novel approach for this task - Lift, Map, Detect (LMD) - that leverages recent advancement in diffusion models. Diffusion models are one type of generative models. At their core, they learn an iterative denoising process that gradually maps a noisy image closer to their training manifolds. LMD leverages this intuition for OOD detection. Specifically, LMD lifts an image off its original manifold by corrupting it, and maps it towards the in-domain manifold with a diffusion model. For an out-of-domain image, the mapped image would have a large distance away from its original manifold, and LMD would identify it as OOD accordingly. We show through extensive experiments that LMD achieves competitive performance across a broad variety of datasets.
翻译:未经监督的分布检测(OOD) 试图通过只从未贴标签的域内数据中学习来识别域外数据。 我们为这项任务提出了一个新颖的方法- 提升、 地图、 检测( LMD), 利用传播模型的最新进展。 传播模型是一种基因化模型。 在核心方面, 他们学习了一种迭代分解过程, 逐渐绘制离培训系统更近的噪音图像。 LMD 利用这种直觉探测OOD。 具体地说, LMD 将图像从原始的元件上移开, 并用一个扩散模型将它绘制到域内的元件上。 对于外部图像来说, 所绘制的图像离其原始元件有很远的距离, 并且 LMD 将据此将其识别为 OOD 。 我们通过广泛的实验显示, LMD 能够在范围广泛的数据集中实现竞争性性表现 。