Message exchange among vehicles plays an important role in ensuring road safety. Emergency message dissemination is usually carried out by broadcasting. However, high vehicle density and mobility usually lead to challenges in message dissemination such as broadcasting storm and low probability of packet reception. This paper proposes a federated learning based blockchain-assisted message dissemination solution. Similar to the incentive-based Proof-of-Work consensus in blockchain, vehicles compete to become a relay node (miner) by processing the proposed Proof-of-Federated-Learning (PoFL) consensus which is embedded in the smart contract of blockchain. Both theoretical and practical analysis of the proposed solution are provided. Specifically, the proposed blockchain based federated learning results in more number of vehicles uploading their models in a given time, which can potentially lead to a more accurate model in less time as compared to the same solution without using blockchain. It also outperforms the other blockchain approaches for message dissemination by reducing 65.2% of time delay in consensus, improving at least 8.2% message delivery rate and preserving privacy of neighbor vehicle more efficiently. The economic model to incentivize vehicles participating in federated learning and message dissemination is further analyzed using Stackelberg game model.


翻译:车辆之间的电文交换在确保道路安全方面起着重要作用。紧急信息传播通常通过广播进行。然而,车辆密度和流动性高通常导致信息传播方面的挑战,如广播风暴和接收包的概率低。本文件建议采用基于联结学习的供应链辅助信息传播解决方案。与基于鼓励的供应链“工作校对”共识类似,车辆竞相成为中继节点(miner),处理拟议中的联邦学习证明(PoFL)共识,该共识已嵌入了块链的智能合同中。提供了对拟议解决方案的理论和实际分析。具体而言,拟议的基于块链的联结学习结果,在特定时间内上传模式的车辆数量较多,在不使用块链的情况下,可能会在更短的时间内导致一个更准确的模式,而没有使用相同的解决方案。它还通过减少65.2%的共识延迟,提高至少8.2%的信息传送率,并更高效地保护邻居车辆的隐私,从而超越了其他条链路。使用Stackel游戏进一步分析为参与联结学习和信息传播模式的车辆的激励模式的经济模式。

0
下载
关闭预览

相关内容

联邦学习(Federated Learning)是一种新兴的人工智能基础技术,在 2016 年由谷歌最先提出,原本用于解决安卓手机终端用户在本地更新模型的问题,其设计目标是在保障大数据交换时的信息安全、保护终端数据和个人数据隐私、保证合法合规的前提下,在多参与方或多计算结点之间开展高效率的机器学习。其中,联邦学习可使用的机器学习算法不局限于神经网络,还包括随机森林等重要算法。联邦学习有望成为下一代人工智能协同算法和协作网络的基础。
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
计算机类 | 低难度国际会议信息6条
Call4Papers
6+阅读 · 2019年4月28日
计算机 | USENIX Security 2020等国际会议信息5条
Call4Papers
7+阅读 · 2019年4月25日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
10+阅读 · 2021年3月30日
Arxiv
3+阅读 · 2020年5月1日
Arxiv
45+阅读 · 2019年12月20日
VIP会员
相关VIP内容
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
计算机类 | 低难度国际会议信息6条
Call4Papers
6+阅读 · 2019年4月28日
计算机 | USENIX Security 2020等国际会议信息5条
Call4Papers
7+阅读 · 2019年4月25日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员