We consider the problem of recovering two unknown vectors, $\boldsymbol{w}$ and $\boldsymbol{x}$, of length $L$ from their circular convolution. We make the structural assumption that the two vectors are members of known subspaces, one with dimension $N$ and the other with dimension $K$. Although the observed convolution is nonlinear in both $\boldsymbol{w}$ and $\boldsymbol{x}$, it is linear in the rank-1 matrix formed by their outer product $\boldsymbol{w}\boldsymbol{x}^*$. This observation allows us to recast the deconvolution problem as low-rank matrix recovery problem from linear measurements, whose natural convex relaxation is a nuclear norm minimization program. We prove the effectiveness of this relaxation by showing that for "generic" signals, the program can deconvolve $\boldsymbol{w}$ and $\boldsymbol{x}$ exactly when the maximum of $N$ and $K$ is almost on the order of $L$. That is, we show that if $\boldsymbol{x}$ is drawn from a random subspace of dimension $N$, and $\boldsymbol{w}$ is a vector in a subspace of dimension $K$ whose basis vectors are "spread out" in the frequency domain, then nuclear norm minimization recovers $\boldsymbol{w}\boldsymbol{x}^*$ without error. We discuss this result in the context of blind channel estimation in communications. If we have a message of length $N$ which we code using a random $L\times N$ coding matrix, and the encoded message travels through an unknown linear time-invariant channel of maximum length $K$, then the receiver can recover both the channel response and the message when $L\gtrsim N+K$, to within constant and log factors.


翻译:我们考虑的是两个未知的矢量, $\ boldsymbol{w} 美元和$\ boldsymbol{x} 美元, 其长度为 $\ boldsymbol{x} 美元。 我们从结构上假设这两个矢量是已知的子空间的成员, 一个带有维度的子空间, 一个带有维度的, 另一个带有维度的K$。 尽管观察到的共变在 $\ boldsylsol{w} 美元和 $\ boldsymbol{x} 美元之间都是非线性, 由它们的外产产品$\ boldsymbol{ ball{x} 美元长度构成的直线性矩阵 。 我们的结构性假设是, 以美元和美元为最低值的流值的內的數值 。

0
下载
关闭预览

相关内容

【经典书】贝叶斯编程,378页pdf,Bayesian Programming
专知会员服务
247+阅读 · 2020年5月18日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Learning to Importance Sample in Primary Sample Space
Arxiv
4+阅读 · 2018年3月14日
Arxiv
3+阅读 · 2018年2月24日
Arxiv
5+阅读 · 2018年1月17日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Top
微信扫码咨询专知VIP会员