Explainable numerical representations or latent information of otherwise complex datasets are more convenient to analyze and study. These representations assist in identifying clusters and outliers, assess similar data points, and explore and interpolate data. Dataset of three-dimensional (3D) building models possesses inherent complexity in various footprint shapes, distinct roof types, walls, height, and volume. Traditionally, grouping similar buildings or 3D shapes requires matching their known properties and shape metrics with each other. However, this requires obtaining a plethora of such properties to calculate similarity. This study, in contrast, utilizes an autoencoder to compute the shape information in a fixed-size vector form that can be compared and grouped with the help of distance metrics. The study uses 'FoldingNet,' a 3D autoencoder, to generate the latent representation of each building from the obtained LoD 2 CityGML dataset. The efficacy of the embeddings obtained from the autoencoder is further analyzed by dataset reconstruction, latent spread visualization, and hierarchical clustering methods. While the clusters give an overall perspective of the type of build forms, they do not include geospatial information in the clustering. A geospatial model is therefore created to iteratively find the geographical groupings of buildings using cosine similarity approaches in embedding vectors. The German federal states of Brandenburg and Berlin are taken as an example to test the methodology. The output provides a detailed overview of the build forms in the form of semantic topological clusters and geographical groupings. This approach is beneficial and scalable for complex analytics, e.g., in large urban simulations, urban morphological studies, energy analysis, or evaluations of building stock.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年11月24日
A survey on deep hashing for image retrieval
Arxiv
15+阅读 · 2020年6月10日
VIP会员
相关资讯
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员